

Feb 19-8:47 AM

\section*{Some warm up Problems Graph \\ $\left\{\begin{array}{l}y=\frac{-2}{5} x+2 \\ 2 x+5 y=-10\end{array}\right.$ \\ | x | y |
| :---: | :---: |
| 0 | -2 |
| -5 | 0 | \\ }

$$
\begin{aligned}
& \text { Graph } \\
& \left\{\begin{array}{l}
y=\frac{4}{7} x+3 \\
y+5=\frac{4}{7}(x-2) \\
\quad \quad \quad
\end{array}\right. \\
& \begin{aligned}
y+5=0 \quad x-2=0 \\
y=-5
\end{aligned} \quad x=2
\end{aligned}
$$

Same slope

$$
0
$$

$$
\text { Different Y-Int. } \Rightarrow \text { Parallel lines }
$$

Graph

$$
\begin{aligned}
& y=\frac{3}{4} x-3 \\
& y=\frac{-4}{3} x-3
\end{aligned}
$$

and $y=4$
Shade the region that is bounded by all three lines.

$$
\frac{3}{4} \cdot-\frac{4}{3}=\frac{-12}{12}=1
$$

find eq of a line that contains $(-5,7)$ with

1) Zero slope
2) $m=-2$

$$
\begin{aligned}
& m=0 \text {, H.L., } y \text {-only } \\
& y=7
\end{aligned}
$$

$$
\left.\begin{array}{l}
\begin{array}{l}
m=-2 \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-7=-2(x-5) \\
y-7=-2 x-10
\end{array} \\
\begin{array}{l}
y-y_{1}=m\left(x-x_{1}\right) \\
y=-2 x-3 \\
\\
2 x+y=-3
\end{array} \\
y-7=\frac{3}{5}(x-5) \\
y-7=\frac{3}{5} x+3
\end{array}\right] \begin{aligned}
& y=\frac{3}{5} x+10 \\
& 5 y=3 x+50 \\
& -3 x+5 y=50 \\
& \hline 3 x-5 y=-50
\end{aligned}
$$

2) No slope undefined slope, V.L., x-only $x=-5$
3) $m=\frac{3}{5}$

Find eqn of a line that contains $(3,0)$ and

$$
\begin{aligned}
& \text { 1) }(7,0),(3,0) \\
& m=\frac{0-0}{7-3}=\frac{0}{4}=0 \quad m=\frac{y_{1}-y_{2}^{2}}{x_{1}-x_{2}} \quad \begin{array}{l}
(3,-5)-0(3,0) \\
x=3 \\
\hline-3
\end{array} \\
& y=0 \\
& \text { 3) }(0,4)(3,0) \\
& m=\frac{4-0}{0-3}=\frac{4}{-3}=-\frac{4}{3} \\
& \text { 4) }(-2,1),(3,0) \\
& m=\frac{7-0}{-2-3}=\frac{7}{-5} \frac{-7}{5} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{-4}{3}(x-0) \\
& y-0=\frac{-7}{5}(x-3) \\
& y=\frac{-7}{5} x+\frac{21}{5} \\
& 5 y=-7 x+21 \\
& 7 x+5 y=21 \\
& 3 y=-4 x+12
\end{aligned}
$$

Find egn of a line that contains $(-2,4)$ and is parallel to the line $3 x-2 y=8$.

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) & -2 y=-3 x+8 \\
y-4=\frac{3}{2}(x--2) & y=-\frac{3}{2} x+\frac{8}{-2} \\
y-4=\frac{3}{2} x+3 & \\
y=\frac{3}{2} x+7 \quad 2 y=3 x+14 & -3 x+2 y=14 \\
\text { Slope- Int. Form } & 3 x-2 y=-14 \\
\hline \text { Standard form }
\end{array}
$$

find eqn of aline that contains $(-4,-3)$ and is perpendicular to the line $4 x+5 y=-8$.

$$
\begin{array}{ll}
0 & 5 y=-4 x-8 \\
- \text { Reciprocal }=-\left(\frac{-5}{4}\right) & y=-\frac{4}{5} x-\frac{8}{5}
\end{array}
$$

our new line has slope $\frac{5}{4}$
Now use Point-slope Formula

$$
\begin{aligned}
& \begin{array}{l}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=\frac{5}{4}(x--4) \\
y+3
\end{array} \quad\left[\begin{array}{l}
\frac{5}{4}(x+4)
\end{array}\left[\begin{array}{l}
y+3=\frac{5}{4} x+\frac{5}{4} \cdot 4 \\
y=\frac{5}{4} x+2
\end{array}\right] \begin{array}{l}
\text { slope - } \\
\text { Int. } \\
\text { form }
\end{array}\right.
\end{aligned}
$$

So far, we have done ch. 1,2, and 3 .
ch. 8 System of linear equations in two Variables.

$$
\left\{\begin{array} { l }
{ 2 x - 3 y = 6 } \\
{ x = y + 4 }
\end{array} \quad \left\{\begin{array} { l }
{ x + y = 5 } \\
{ x - y = - 1 }
\end{array} \quad \left\{\begin{array}{l}
y=\frac{3}{4} x-2 \\
y=\frac{-2}{5} x+3
\end{array}\right.\right.\right.
$$

The Solution, if exists, is an ordened-pair that satisfies both equations in the system. ex: Is $(2,3)$ a solution for

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x+y=9 \\
x-y=-1
\end{array} \text { ? } \begin{array}{l}
\text { we plow in the ordered- Pair }
\end{array}\right. \\
& \{x-y=-1 \text { ? in both ens. If both } \\
& \begin{array}{ll}
3 x+y=9 & \text { results are true } \rightarrow \text { Yes } \\
\text { If at least } 1 \text { fails } \rightarrow \text { NO }
\end{array} \\
& 3(2)+3=9 \quad x-y=-1 \quad \text { Yes }(2,3) \\
& 6+3=9 \checkmark \quad 2-3=-1 \checkmark \quad \text { is a solution. }
\end{aligned}
$$

Is $(-2,5)$ a Solution of

$$
\begin{gathered}
\left\{\begin{array} { r r }
{ 3 x + 2 y = 4 ? } & { 3 x + 2 y = 4 } \\
{ 2 x - y = 9 \times } & { 3 (- 2) + 2 (5) = 4 } \\
{ - 6 + 1 0 = 4 }
\end{array} \left\{\begin{array}{r}
2 x-y=9 \\
2(-2)-5=9 \\
-4-5=9 \\
(-2,5) \text { is not } a
\end{array} \begin{array}{c}
-9=9
\end{array}\right.\right. \\
\text { Solution. }
\end{gathered}
$$

How to solve system of linear equations in two-Variables:

1) Graphing
2) Substitution
3) Addition/Elimination
4) There are other methods that You learn in other math classes.

Solve by graphing:

$$
\left\{\begin{array}{l}
x+y=5 \\
x-y=-3
\end{array}\right.
$$

$$
\{(1,4)\}
$$

$$
(1,4)
$$

Solve by graphing

$$
\left\{\begin{array}{c}
2 x+3 y=12 \\
y=\frac{-2}{3} x-4 \\
y-1 n+(0,-4) \\
m=\frac{-2}{3}
\end{array}\right.
$$

Solve by graphing:

$$
\left\{\begin{array}{c}
3 x-4 y=-12 \\
y=\frac{3}{4} x+3 \\
y-\operatorname{In}+(0,3) \\
m=\frac{3}{4}
\end{array}\right.
$$

Solve by Substitution

$$
\left\{\begin{array}{cc}
\left\{\begin{array}{l}
3 x-2 y=5 \\
y=x-3
\end{array}\right. & \begin{array}{c}
3 x-2(x-3)=5 \\
3 x-2 x+6=5 \\
x=5-6
\end{array} \\
x=-1
\end{array}\right\}
$$

Solve by Subs. method

$$
\left\{\begin{array}{rl}
x-2 y=5 \rightarrow x-2\left(\frac{1}{2} x-4\right) & =5 \\
y=\frac{1}{2} x-4 & x-2 \cdot \frac{1}{2} x+2 \cdot 4=5 \\
x-x+8 & =5 \\
8 & =5
\end{array}\right.
$$

false
No Solution

Solve by Subs.

$$
\begin{aligned}
& \left\{\begin{array}{lc}
3 x-5 y=15 \rightarrow 3 x-5\left(\frac{3}{5} x-3\right)=15 \\
y=\frac{3}{5} x-3 & \text { Distribute }
\end{array}\right. \\
& 3 x-5 \cdot \frac{3}{5} x+15=15 \\
& 3 x-3 x+15=15 \\
& \text { infinitely Many Solutions } 15=15 \\
& \text { True }
\end{aligned}
$$

Solve by addition/Elimination:

$$
\begin{array}{r}
1+y=5 \\
y=5-1 \\
y=4
\end{array}
$$

final Ans.

$$
\begin{aligned}
& (1,4) \\
& \{(1,4)\}
\end{aligned}
$$

Solve by addition/elimination

$$
\left.\begin{array}{rl}
2 \begin{cases}3 x+2 y=9 \\
x-y=3\end{cases}
\end{array} \Rightarrow\left\{\begin{array}{ll}
3 x+2 y & =9 \\
2 x-2 y & =6
\end{array}\right]=15\right\}
$$

Solve by addition/elimination method:

$$
\begin{aligned}
& 3\left\{\begin{array} { l }
{ 5 x - 4 y = 8 } \\
{ 2 x + 3 y = - 6 }
\end{array} \Rightarrow \left\{\begin{array}{l}
15 x-12 y=24 \\
8 x+12 y=-24
\end{array}\right.\right. \\
& 2(0)+3 y=-6 \quad 23 x=0 \\
& 0+3 y=-6 \\
& x=\frac{0}{23} \quad x=0 \\
& y=\frac{-6}{3} \quad y=-2 \\
& (0,-2) \Rightarrow\{(0,-2)\}
\end{aligned}
$$

find two complementary angles such that one of them is 10° less than three times the other one.

$$
\begin{array}{ll}
x=30-x & \begin{array}{l}
x=3(90-x)-10 \\
x=270-3 x-10 \\
x+3 x=270-10
\end{array} \\
90-x=3 x-10 & 4 x=260 \\
-x-3 x=-10-90 & x=65 \\
-4 x=-100 & 25^{\circ}, 665^{\circ}
\end{array}
$$

find two supplementary angles such that One of them is 20° more than 3 times

$$
\begin{align*}
& \text { the other one. } \\
& \begin{array}{l}
x^{\circ} \xi(180-x)^{\circ} \\
140^{\circ} \varepsilon_{1} 40^{\circ}
\end{array} \\
& \begin{array}{l}
x=3(180-x)+20 \\
180-x=340-3 x+20 \\
-x-3 x=20-180 \\
-4 x=-160 \rightarrow x=40 \\
x+3 x=560 \\
4 x=560
\end{array}
\end{align*}
$$

find an angle such that the sum of twice its Complement and 3 times its Supplement equals 360°.

Angle $\rightarrow \chi$
Complement $\rightarrow 90-x$
Supplement $\rightarrow 180-x$

$$
2 \cdot \text { Comp. }+3 \cdot \text { suppl. }=360
$$

$$
2(90-x)+3(180-x)=360
$$

$$
180-2 x+540-3 x=360
$$

$$
\begin{array}{r}
-5 x+720=360 \\
-5 x=360-720 \\
-5 x=-360 \\
x=72
\end{array}
$$

find an angle such that the difference of
3 times its supplement and 7 times its
Complement is equal to 70°.
Angle $\rightarrow x$
Comp. $\rightarrow 90-x \quad$ 3. Suppl. -7 .Comp. $=70$
Suppl. $\rightarrow 180-x$

$$
\begin{gathered}
3(180-x)-7(90-x)=70 \\
540-3 x-630+7 x=70 \\
4 x-90=70 \\
4 x=160 \quad x=40
\end{gathered}
$$

In triangle $A B C$, Angle B is twice angle A. Angle C is 4° more than 5 times angle A. find all three angle.

$$
\measuredangle A=x
$$

$$
\measuredangle B=2 x
$$

$$
\angle c=5 x+4
$$

$$
22^{\circ}, 44^{\circ} \text {, and } 114^{\circ}
$$

$$
\begin{gathered}
A+B+C=180^{\circ} \\
x+2 x+5 x+4=180 \\
8 x=180-4 \\
8 x=176 \\
x=22
\end{gathered}
$$

Exam 2: Next Thursday In Your Package go to Points 言Lines work on Problems 1-50. It is due next Thursday

SG $8 \xi, 9$, and 10 Due TuesdaY No School on Monday

Also work on Angles ε. Triangles Problems This will be due on wednesday.

